Exploring the origin and degree of genetic isolation of Anopheles gambiae from the islands of São Tomé and Príncipe, potential sites for testing transgenic-based vector control

نویسندگان

  • Jonathon C Marshall
  • João Pinto
  • Jacques Derek Charlwood
  • Gabriele Gentile
  • Federica Santolamazza
  • Frèdèric Simard
  • Alessandra Della Torre
  • Martin J Donnelly
  • Adalgisa Caccone
چکیده

The evolutionary processes at play between island and mainland populations of the malaria mosquito vector Anopheles gambiae sensu stricto are of great interest as islands may be suitable sites for preliminary application of transgenic-based vector control strategies. São Tomé and Príncipe, located off the West African coast, have received such attention in recent years. This study investigates the degree of isolation of An. gambiae s.s. populations between these islands and the mainland based on mitochondrial and ribosomal DNA molecular data. We identify possible continental localities from which these island populations derived. For these purposes, we used F ST values, haplotype networks, and nested clade analysis to estimate migration rates and patterns. Haplotypes from both markers are geographically widespread across the African continent. Results indicate that the populations from São Tomé and Príncipe are relatively isolated from continental African populations, suggesting they are promising sites for test releases of transgenic individuals. These island populations are possibly derived from two separate continental migrations. This result is discussed in the context of the history of the African slave trade with respect to São Tomé and Príncipe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into the Population Structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands Revealed by Herves Transposable Elements

Transposable elements (TEs) are mobile portions of DNA that are able to replicate and spread in the genome of many organisms. TEs can be used as a means to insert transgenes in insects, being stably inherited throughout generations. Anopheles gambiae is the main vector of human malaria in Sub-Saharan Africa. Given the extraordinary burden this disease imposes, the mosquito became a choice targe...

متن کامل

An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control

Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations fo...

متن کامل

Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test

<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...

متن کامل

Determination of Glutathione S-Transferase e2 Region (GSTe2) in DDT Susceptible and Resistant Anopheles stephensi Populations: Significance and Application of Nucleotide and Amino Acid Comparison

Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Interest in insect GSTs has primarily focused on their role in insecticide resistance. In this study, following World Health Organization (WHO) routine susceptibility test, DNA was extracted from specimens of Anopheles stephensi collected from the Kazeroon distri...

متن کامل

Targeted Mutagenesis in the Malaria Mosquito Using TALE Nucleases

Anopheles gambiae, the main mosquito vector of human malaria, is a challenging organism to manipulate genetically. As a consequence, reverse genetics studies in this disease vector have been largely limited to RNA interference experiments. Here, we report the targeted disruption of the immunity gene TEP1 using transgenic expression of Transcription-Activator Like Effector Nucleases (TALENs), an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008